

Hydrogen Delivery

Mark Paster

2006 DOE Hydrogen Program
Merit Review and Peer Evaluation Meeting

May 16, 2006

Hydrogen Delivery

Goal

Develop hydrogen delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power

Scope

From the end point of central or distributed production (300 psi H2) to and including the dispenser at a refueling station or stationary power site

< \$1/gge Overall by 2017

<\$.40/gge for Forecourt operations by 2015

Research Areas

Pathways

- Gaseous Hydrogen Delivery
- Liquid Hydrogen Delivery
- Carriers

Components

Pipelines

Compression

Liquefaction

Carriers & Transformations

Gaseous Storage Tanks

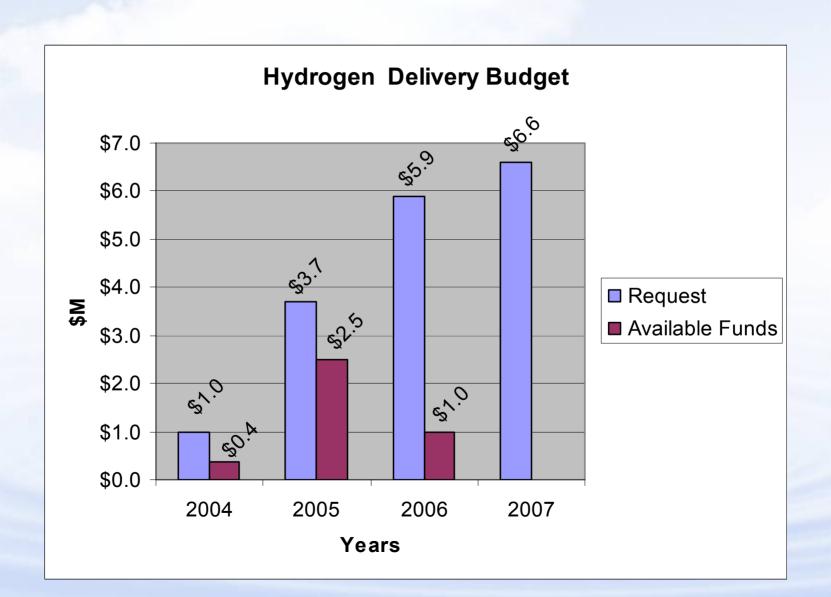
Geologic Storage

GH2 Tube Trailers

Terminals

Separations/Purification

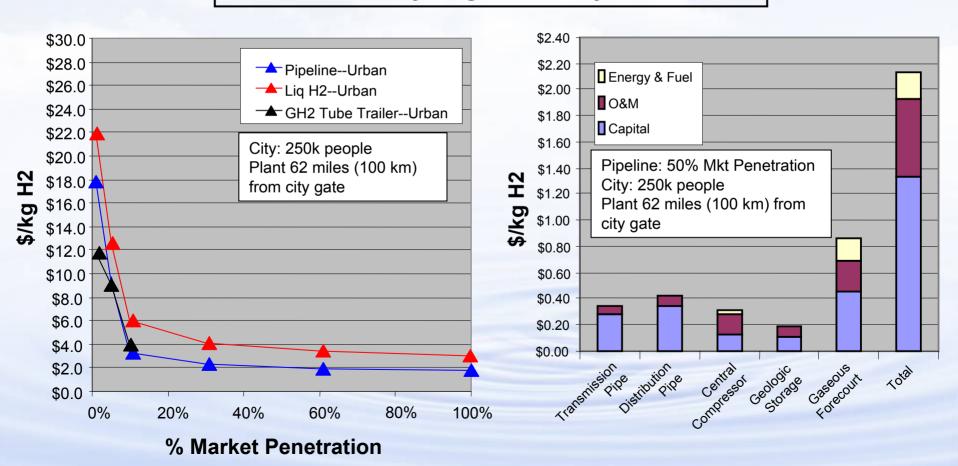
Dispensers


Liquid Storage Tanks

Mobile Fuelers

Liquid Trucks, Rail,

Ships


EERE Delivery R&D Budget

Accomplishments

• H2A Delivery Models: Components and Scenario Model (www.hydrogen.energy.gov)

Current Hydrogen Delivery Costs

Accomplishments

- Comprehensive Roadmap: FreedomCAR Delivery Tech Team
- Established a robust portfolio of research projects
- Established a Pipeline Working Group
 - → Fundamental work on hydrogen embrittlement (U. of Illionois)
 - → Strong collaboration across National Labs (ORNL, SRNL, SNL) and industry
 - → Breakthrough composite pipe approach
 - → Mini-Workshops including C&S community
 - → Interaction with EC Naturally Project
- Analysis
 - → Nexant: comprehensive collaborative analysis project
 - → GTI: Forecourt options

Key Learnings/Challenges

- Forecourt costs are significant and need to be reduced
 - → Compression reliability needs to be improved
 - → Storage: Need a breakthrough in high pressure storage or carrier system
 - → O&M costs are high: How can they be reduced
- Pipelines are the current low cost pathway for the long term, but:
 - → How to move to pipelines (at least transmission) earlier?
 - → H2 distribution lines in cities ? And at what pressure?
- Transition
 - → Low volumes means much higher delivery costs
 - → Need a breakthrough: liquefaction, higher H2 content tube trailers, or a carrier approach

(www.eere.energy.gove/hydrogenandfuelcells/)